
Using Hierarchical Simplicial Meshes
to Render Atmospheric Effects

F. Betul Atalay David M. Mount

Department of Computer Science
University of Maryland

College Park, Maryland 20742
{betul,mount}@cs.umd.edu

Abstract

A fundamental element of computer graphics is produc-
ing realistic visualizations of various natural phenomena.
An important problem in this area is that of rendering
scenes containing atmospheric effects, which arise from
the absorbtion and scattering of light due to small parti-
cles such as dust and smoke. Generating photorealistic
renderings through ray-tracing is computationally very
demanding because of the time needed to perform numer-
ical integration along the length of each ray to determine
the opacity and color of the gaseous media.

We present a new data structure and algorithm for effi-
ciently rendering atmospheric effects. Our approach is
based on adaptively sampling a sparse set of the rays.
Each ray is modeled as a point in a 4-dimensional space,
and the results of the numerical integrations for these rays
are computed accurately and stored in a 4-dimensional
spatial index. The results for arbitrary rays are then com-
puted through relatively inexpensive linear interpolations
between neighboring sampled rays. In order for the in-
terpolations to be continuous, it is important that the spa-
tial index be based on a cell complex. This precludes
the use of well-known structures such as kd-trees and oc-
trees. Our spatial index is a recently discovered point-
erless data structure, called asimplex decomposition tree,
which is based on a hierarchical simplicial decomposition
of space.

In addition to presenting the data structure, we discuss
a number of issues in the efficient application of this tree
for rendering. We present empirical evidence that our
approach can produce renderings of high quality signifi-
cantly faster than simple ray-tracing. Given the centrality
of sampling and reconstruction in computer graphics, this
data structure is likely to be useful other applications in
this field.

Key words: Atmospheric effects, rendering, ray-tracing,
geometric data structures, hierarchical meshes, interpo-
lation.

1 Introduction

Realistic image synthesis is a fundamental problem in
computer graphics. An important and challenging sub-
problem is that of accurately rendering atmospheric phe-
nomena such as smoke and dust, which arise as a result
of the absorbtion and scattering of light while passing
through a participating medium. An accurate simulation
of the interaction of light with a participating medium is
quite complex, since it involves the use of radiative trans-
port theory [11, 5]. However, for the purpose of render-
ing atmospheric effects, simpler models have been pro-
posed, and have been shown to be quite satisfactory. A
good survey of different optical models can be found in
[16]. There has been considerable success in recent years
in producing realistic physical models for smoke and re-
lated natural phenomena[8, 10, 15, 17, 19, 22]. Our in-
terest here is not on how to model such phenomena, but
rather on how to render them accurately and efficiently.

A number of hardware-based approaches for render-
ing smoke and other atmospheric phenomena have been
proposed in the literature. In the context of rendering,
Stam [22] and Fedkiw, et al. [7] propose the use of 3-
dimensional texture maps to store the density of the at-
mospheric medium in each voxel of the texture map, and
then render this texture map from back to front. Dobahsi,
et al. [6] propose a similar approach based on comput-
ing a collection of preprocessed sample planes. For ap-
proaches involving other types of atmospheric phenom-
ena, see also [4, 12, 23].

However, these methods suffer from a limited ability
to model multiple scattering and other effects needed to
render media with high albedo. Also, the use of grid-
based representations, while amenable to hardware im-
plementation, cannot readily adapt to variations in the
density and color of the media. An alternative approach
for generating realistic images, which can handle media
with high albedo, is based on photon maps [10, 7]. This
process is more computationally intensive, but achieves a
high degree of realism by solving the full volume render-

ing equation for the medium. A significant component in
the actual rendering time is the numerical integration per-
formed by marching along the length of each ray in order
to determine the overall opacity and color of the media.

We propose a new data structure and algorithm for ac-
celerating this process. The basic idea is very simple,
namely to replace wherever possible the computation-
ally intensive numerical integration along each ray with
a combination of sampling and interpolation. Each ray is
modeled as a point in a 4-dimensional space. Rays are
sampled adaptively, and the result of the numerical inte-
gration for each of these rays is computed accurately and
stored in a 4-dimensional spatial index.

More formally, we can think of the medium as a func-
tion f , which maps rays to a pair consisting of the color
and opacity. These are the net color and opacity obtained
by marching the ray through the medium, until its colli-
sion with a solid object. Since we model rays as points
in 4-dimensional space, the functionf is a function over
<4:

f : ray→ (color,opacity).

In regions wheref varies smoothly, we expect that ray
coherence can be exploited, that is, nearby rays will pass
through regions of similar color and density, and so the
accumulated color and opacity will be close to each other.
In order to generate the final rendering, rather than inte-
grating along each ray through the volume, we avoid this
expensive integration by collecting and storing relatively
sparse set of sample rays, along with their associated col-
ors and opacities, in a fast data structure. We can then
use inexpensive interpolation methods to approximate the
values of these sampled quantities for other input rays.
Using an adaptive sampling strategy, regions with higher
variations in color and density are sampled more densely,
while avoiding oversampling in smooth areas. We dy-
namically maintain acacheof the most recently gener-
ated samples, in order to reduce the space requirements
of the data structure.

In order to support rapid access, a reasonable approach
would be to store the sampled rays and their associated
results in a data structure based on a hierarchical subdi-
vision of 4-space, such as an octree or kd-tree [3, 20].
One significant problem with such an approach is that
the resulting subdivisions are not guaranteed to be a cell
complexes, which means thatcracksmay exist between
neighboring cells and these may result in discontinuities
in the interpolation. (See Fig. 1(a) and Fig. 2 to see the
effect of cracks on the final image rendered by a related
ray-tracing project involving the use of 4-dimensional in-
terpolations to compute reflections.)

Grid-based subdivisions [9, 13], on the other hand, are
not adaptive to variations. Thus, in order to achieve good

quality, they have to sample very densely, resulting in
very large data structures.

In contrast, our approach is based on a hierarchical
subdivision of 4-space into a cell complex whose faces
are simplices, that is, ahierarchical simplicial complex.
(See Fig. 1(b) for a two-dimensional example.) We store
the hierarchical mesh in a data structure called asimplex
decomposition tree, or sd-tree. Our hierarchical decom-
position is based on the longest-edge bisection method
given by Maubach [14]. Nodes of this data structure can
be accessed through a pointerless method by associating
each node with a location code [2]. Because a simpli-
cial complex is used, we can guarantee aC0 continuous
approximation off . In addition, simplicial decompo-
sitions are much simpler than the octree-based subdivi-
sions, in the sense that the interpolations are performed
with a minimal number of samples (5 samples for the 4-
dimensional case), and hence, this is much cheaper than
the quadrilinear interpolation using 16 samples.

In Section 2, we present an overview of the simplex
decomposition tree data structure and describe how it
is used for answering interpolation queries. The sim-
plex decomposition tree involves a subdivision of 4-
dimensional space, and it is well known that the com-
plexities of subdivisions tend to increase exponentially as
a function of the dimension. Consequently, it is important
to save space wherever possible. In Section 3, we discuss
a number of issues involved in the use of the data struc-
ture for the purposes rendering, and how to minimize the
size of the resulting data structure.

Section 4 presents an empirical analysis of the data
structure. The data structure does not rely on any par-
ticular model or representation of the medium or a partic-
ular method of modeling light transport along the ray. It
merely assumes that it is possible to determine the color
and density of the medium at any point, and that we have
access to a function for integrating this information along
each ray to determine its contribution in terms of opac-
ity and color. For our experiments, we applied a simple
light model, which accounts for extinction of light due to
absorption by particles (opacity) and for the addition of
light by reflection of external illumination. We adapted a
simple smoke volume shader given in [18] that is used by
ray-tracers like RenderMan or BMRT. The general idea
is to march along the viewing ray, choosing an appropri-
ate step size, sampling illumination and accounting for
atmospheric extinction based on the smoke density at ev-
ery portion of the ray. The smoke density at any point is
determined by a noise function.

Although we have motivated this data structure from
the perspective of a volume shader, there are a number of
applications having to do with lines in 3-space that can

crack

(b)(a)

Figure 1: A crack (a) and a hierarchical simplicial mesh in the plane (b).

(a) (b) (c) (d)

Figure 2: Results of a ray-tracing application to produce an 800 × 800 image based on 4-dimensional interpolations
using (a) a kd-tree based on 14,492 samples and (b) a simplex decomposition tree based on 13,456 samples (CPU-
times are equal for both). Details of these images are shown in (c) and (d), respectively. Note the blocky artifacts in
the kd-tree approach (c).

benefit from this general approach.

2 The Simplex Decomposition Tree

In this section, we describe our data structure, thesd-tree.
Onesd-treeis built per volume. The volume is defined
by an axis-aligned bounding box, and the data structure
stores the attributes associated with some set of sample
rays that intersect the volume.

2.1 Parameterizing Rays as Points
We model each ray by the directed line that contains the
ray. Directed lines can be represented as a point lying
on a 4-dimensional manifold in 5-dimensional projective
space using Plücker coordinates [21], but we will adopt a
simpler popular representation, called thetwo-plane pa-
rameterization[9, 13, 3]. A directed line is first classified
into one of 6 different classes (corresponding to 6plane
pairs) according to the line’sdominant direction, defined
to be the axis corresponding to the largest coordinate of
the line’s directional vector and its sign. These classes are
denoted+X,−X, +Y,−Y , +Z,−Z. The directed line
is then represented by its two intercepts(s, t) and(u, v)
with front planeandback plane, respectively, that are or-
thogonal to the dominant direction and coinciding with
the volume’s bounding box.

2.2 Construction of thesd-tree
Thesd-treeis a collection of binary trees based on a reg-
ular simplicial decomposition of the 4-dimensional space
of directed lines. Each plane-pair is associated with a 4-

dimensional hypercube in line space containing all rays
that pass through it. The 16 corner points of the hyper-
cube represent the 16 rays from each of the four corners
of the front plane to the each of the four corners of the
back plane.

To simplify the presentation, assume that each hyper-
cube has been scaled and translated to a reference hy-
percube of side length 2, centered at the origin, that
is [−1, 1]4. Each hypercube is initially subdivided into
4! = 24 congruent simplices that share the diagonal join-
ing the vertices(−1)4 and (1)4. It is well known that
the collection of these simplices fully subdivide the hy-
percube, and further that this subdivision is a simplicial
complex[1]. These4! simplices form the starting point of
our simplicial decomposition. Simplices are then refined
by a process of repeated subdivision, calledbisection, in
which a simplex is bisected by splitting its longest edge
[14]. Hence, each coarse simplex at the highest level is
the root of a separate binary tree, which are conceptually
joined under a common super-root corresponding to the
hypercube. Thesd-treethen consists of 6 such trees, one
for each plane-pair. A 4-dimensional simplex has 5 ver-
tices, which is the minimum number of points required
for linear interpolation in 4-dimensional space. The 5
vertices of a simplicial leaf cell insd-treeconstitute the
ray samples which form the basis of our interpolation.

With every4 consecutive bisections, the resulting sim-
plices are similar copies of their4-fold grandparent, sub-
ject to a uniform scaling by1/2. Thus, the pattern of

decomposition repeats every4 levels. Moreover, all sim-
plices at the same level are congruent to each other, and
thus all similarity classes can be represented by 4 canon-
ical simplices. All other simplices can be described by a
permutation, a reflection, scaling and translation of these
reference simplices. Using this fact, Atalay and Mount
[2] have shown that, it is possible to define a location code
that uniquely identifies a simplex of the hierarchy. This
location code, called theLPT code, directly encodes the
geometric relationship between a simplex and its associ-
ated reference simplex. All operations on the hierarchy,
such as traversal, point location and neighbor finding are
defined by means of theLPT code. Especially, locating
any face neighbor of a simplex efficiently, given only its
LPT code is a valuable operation for compatibility re-
finement as will be explained shortly.

2.3 Adaptive and Dynamic Subdivision
Thesd-treegrows and shrinks dynamically based on de-
mand. Initially, only the 16 corners of each hypercube
is sampled, and the initial 24 coarse simplices are con-
structed. A leaf simplex is subdivided by bisection along
its longest edge, by sampling the midpoint of that edge.
To avoid duplicate sampling, a hash table containing all
the vertices of the subdivison is maintained.

Rays need to be sampled more densely in some regions
than others, that is, in regions where the functionf has
greater variation. For this reason, the subdivision is car-
ried out adaptively. The leaf cell is subdivided unless one
of the followingtermination conditionsis satisfied.
Termination Condition: We would like to compute an
error of approximation associated with a leaf simplex. A
good error measure for a leaf simplexS can be defined as
the distance,d(f(b), f̃(b)), whereb is the barycenter of
S, f(b) is the correct value of the function atb computed
by ray marching, and̃f(b) is the approximate value of
the function atb computed by barycentric interpolation
of the vertices ofS. For the smoke volume application,
the distanced is a weighted distance of color and opacity.
However, this error measure is quite costly for simplicial
decompositions, since the number of nodes grow faster
than the number of vertices, and so, to sample a number
of vertices, we would be forced to compute many more
samples at node barycenters to compute the error during
the construction. For this reason, we have chosen instead
to use another heuristic to define the error associated with
a leaf simplexS.

e(S) = max{d(f(vi), f(vj)) | 0 ≤ i < j ≤ 4},

wherev0,. . . ,v4 are the vertices ofS.
Pixel Resolution versus Depth Constraint: The tree
could be allowed to grow until pixel resolution (i.e. pro-
jected leaf simplex width is less than the pixel width), or,

in order to avoid excessive growth at strong discontinu-
ity regions, the user may specify adepth constraint, such
that the tree is not allowed to grow beyond that depth.
If the subdivision is stopped due to the depth constraint,
though, that leaf is not used for interpolation.

Consequently, ife(S) exceeds a user-defineddistance
thresholdand the depth of the cell in the tree is less than
a user-defineddepth constraint(or pixel resolution is not
reached), the cell is subdivided. Otherwise, the leaf is
said to befinal.
Cache Behavior: If we were to expand all nodes in the
tree until they are final, the resulting data structure could
be very large, depending on the distance threshold and
the depth constraint. For this reason, we only expand a
node to a final leaf, if this leaf node is needed for some
interpolation. If the size of the data structure exceeds
a user-definedcache size, then the the tree is pruned to
a constant fraction of this size by removing all but the
most recently used nodes. In this way, thesd-treebehaves
much like an LRU-cache.

2.4 Compatible Refinement and the Simplicial Com-
plex

A subdivision ind-dimensional space is said to becom-
patible, if each simplexS in the subdivision shares a
(d − 1)-face with exactly one neighbor simplex. A sim-
plex decomposition tree is a simplicial complex if all of
its simplices are compatible. Compatibility is important,
since otherwise, cracks occur along faces of the subdi-
vision, which in turn present problems when performing
interpolation. In order to keep the subdivision compati-
ble at all times, whenever a simplex is bisected, a series
of bisections will be triggered in other simplices.

compatBisect(S, e)
markS as pending
for (S′ ∈ Ne(S))

if (S′ does not exist)
compatBisect(parent(S′))

// nowS′ exists
if (S′ is a leaf and not marked as pending)

compatBisect(S′)
simpleBisect(S)

Consider a simplexS which is about to be bisected,
and lete denote the next edge ofS to be split. The sim-
plices of the subdivision that share this edge, denoted
Ee(S), must be bisected as well. Atalay and Mount
[2] have defined neighbor rules to efficiently locate the
neighboring simplices that share a common(d− 1)-face
with S, that is, thefacet neighborsof S. LetNe(S) de-
note the facet neighbors ofS that contain the edgee, or
equivalently, the facet neighbors lying opposite all the
d − 1 vertices ofS other than the endpoints ofe. In

q2

q1

q2

q2

��

On−demand Compatible Refinement

q1

q1

1S

S2
Refinement
Compatible

����

q1

��

������

Figure 3: Compatible refinement and on-demand compatible refinement in 2D.

order to access all the simplices ofEe(S) we compute
facet neighbors recursively. The algorithm was given by
Maubach [14], and is shown as the recursive function
compatBisectin the code block. The proceduresimpleBi-
sectperforms the basic bisection step of a simplex.

Maubach proved that in a compatible subdivision, the
facet neighbors ofS needed in this refinement either ap-
pear at the same depth asS or one level closer to the root
[14]. For this reason, if thecompatBisectprocedure does
not find a simplexS′ in the tree, then it knows that its
parent exists, and bisecting the parent will bringS′ into
existence. Note that the bisection of the parent may trig-
ger recursive bisections on levels`− 1 and`− 2, and so
on.

3 Rendering by Interpolation

Let us consider the interpolation of a given input rayr . In
order to locate the leaf simplex containingr , after de-
termining the appropriate hypercube depending on the
dominant direction ofr , we start our seach within the
root simplex (one of the 24 simplices) containingr . The
barycentric coordinates ofr with respect to this root sim-
plex is easily computed because of the special regular
structure of the root simplices. After this initialization,
we recursively descend the hierarchy until finding a leaf
simplex, incrementally updating the barycentric coordi-
nates with respect to each simplex along the way. Since
the nodes of the tree are constructed only as needed, it is
possible thatr will reside in a leaf that is not marked as
final. This means that, this particular leaf has not com-
pleted its recursive subdivision. In this case, the leaf is
subdivided recursively, along the pathr would follow,
until the termination condition is satisfied, and the final
leaf containingr is now marked asfinal. (Other leaves
generated by this process are not so marked.) The color
and opacity forr can now be interpolated by barycentric
interpolation of the values associated with the 5 vertices
of thisfinal leaf simplex.

3.1 One-pass versus Two-pass Rendering
Notice that, even though the final tree constructed is com-
patible, this method does not totally avoid cracks in inter-

polation if the rendering and construction are done in the
same single pass. Consider the two dimensional analogy
in Fig. 3 following the link marked asCompatible Refine-
ment. If q1 arrives beforeq2, there is no problem, since
splitting ofS1 will force S2 to split, and whenq2 arrives,
the simplices will be compatible. However, assume that
q2 arrives beforeq1 and thatS2 satisfies the termination
condition, and marked as final. Whenq2 arrives, it is an-
swered by interpolation of the vertices ofS2. Then, when
q1 arrives, assume that the subdivision in the figure occurs
splitting S1 two more levels. And so,q1 is answered by
interpolating the vertices of a granchild ofS1. However,
sinceq2 is already answered at this point, there would be
a crack in the interpolation, even thoughS2 is forced to
split byS1’s split.

One way of avoiding this is to render in two passes. In
the first pass, the tree is constructed given all the query
points, but without doing the interpolations. In the sec-
ond pass, the queries are answered by performing the in-
terpolations. Obviously, the two-pass rendering will be
slightly more expensive, since the point location proce-
dure will be done twice.

3.2 On-demand Compatible Refinement
Note that, there is a conflict between on-demand con-
struction and compatible refinement for our purposes. To
preserve compatibility, some simplices in the hierarchy
will be refined, even though they will not be used for any
interpolation query eventually. Thus, a lot of work done
for construction of those simplices will be useless, unnec-
essarily reducing the efficiency of the overall algorithm,
and increasing the size of the data structure. To prevent
this, while keeping the compatibility property, we per-
form on-demand compatible refinement, which works as
follows. The bisection of a simplexS does not trigger
the bisection of a neighboring simplex, before that neigh-
bor is actually required by some interpolation. Consider
again Fig. 3, but following theOn-demand Compatible
Refinementlink this time. S1 andS2 are neighbors of
each other at the same level. Let the query pointq1 cause
refinement ofS1 as shown. At the timeq1 caused this
refinement,S2 is not bisected to provide compatibility.

Unless another query needsS2, the tree will remain non-
compatible in fact, but still compatible for our purposes.
However, if later, a queryq2 is located inS2, before any
termination condition is checked, we first check whether
any neighbor ofS2 is refined by bisecting an edge shared
by S2 (even ifS2 is already marked as a final leaf, this
check is performed, and might cause splitting of the final
leaf). In Fig. 3, such a neighbor exists, that isS1. Hence,
S2 will be bisected as well, andq2 will continue its de-
scend in the tree until no more splits are required, before
being interpolated.

This method is much more efficient, since it generates
a much smaller tree. But, for similar reasons with the
original compatible refinement, it cannot avoid cracks to-
tally. In this case, two-pass rendering corrects a substan-
tial percentage of the cracks, but may not eliminate all
the cracks. (Unlike the two-pass rendering explained in
Section 3.1, the second pass as well, will induce subdi-
visions in the tree to correct the cracks.) Experimentally,
we have seen that, among the final leaf nodes, less than
3% have cracks, and that the on-demand version performs
comparably well with respect to the quality of the image
generated. In fact, after a number of passes, the tree will
converge to a crack-free tree.

4 Experimental Results

We have implemented the data structure and evaluated it
using a simple model to render smoke. We have adapted
the smoke volume shader code given in “PhotoRealistic
RenderMan Application Note 20-Writing Fancy Volume
Shaders”[18] to our own ray-tracer. The general idea is to
ray march along the viewing ray choosing an appropriate
step size, sampling illumination and accounting for at-
mospheric extiction based on smoke density at every por-
tion of the ray. The smoke density at any point is deter-
mined by a noise function. This type of volume shaders
that are used by ray-tracers like RenderMan or BMRT are
very expensive, since reasonably small step sizes has to
be chosen to avoid banding artifacts.

In general, this type of volume shaders must bind to
surfaces, that is, there should be an objcet in the back-
ground, so that, the ray marching continues until the
background object is hit. We model the smoke density
as a finite volume, defined by an axis-aligned bounding
box. The viewing ray enters the volume and the integra-
tion continues until the ray exits the volume (or hits an
object that is within the volume). For simplicity, we have
assumed that the smoke volume is designed to extend up
to the background objects, and does not include any ob-
jects inside.

We have modeled the interior of a warehouse, with a
number of windows letting sunlight in. The smoke vol-

ume covers the interior, extending from the left wall to
the right wall, from the floor to the ceiling and from the
back wall to the viewpoint. The viewpoint is slightly out-
side the volume. The step size we picked is 0.3 units (the
shortest distance from the viewpoint to the back plane is
100 units). For smoke, we assume that all wavelengths
are subject to same amount of scattering (color and opac-
ity values have equal red, green, and blue components),
thus, we store color and opacity as scalars. We have ren-
dered images of size800 × 600 anti-aliased (9 rays per
pixel is shot.)

We investigated the speedup and actual error commit-
ted by the interpolation algorithm, as well as the number
of ray samples required, and the percentage of cracks in
the data structure for the on-demand compatible refine-
ment algorithm. Speedup is the ratio of the CPU-time for
the traditional ray marching approach to the CPU-time
for our interpolation algorithm. The error committed by
the interpolation algorithm is measured as the average
distance between the actual color and opacity, and the
corresponding quantity for the interpolated case. We also
report the maximum error committed among all the rays
shot. The color and opacity values are normalized to the
range [0,1]. For our test scene, the actual color values are
in the range [0, 0.2953], and the opacity values are in the
range [0,0.5045]. Average color is 0.05419 and the aver-
age opacity is 0.1249. Fig 4(a), (b) and (c) demonstrate
how the variation in error reflects the change in the qual-
ity of the rendered image. Notice the artifacts in (b) and
(c) when the data structure is not subdivided as densely
as in (a).

The percentage of cracks is given both in terms of the
percentage of the final leaves (the leaves used for inter-
polation) that have cracks, and the percentage of the rays
that are interpolated using the leaves with cracks.

The number of ray samples is the number of rays that
are sampled during the construction of the data structure
at simplex vertices. Sampling is the dominating cost. For
example, for the compatible, two-pass rendering, the first
pass during which the construction is done takes 90% of
the total time, while the second pass takes only 10% of
the total time to do point location and interpolation. For
more expensive smoke rendering models, or for smaller
step sizes, the cost of sampling will be even more dom-
inant, since the time taken by interpolation and point lo-
cation will remain almost constant. Hence, the speedup
is bounded by the ratio of the total number of rays shot
while rendering by ray marching to the number of sample
rays generated while rendering by the interpolation algo-
rithm. This suggests that, for higher resolution images,
the speedups will be much higher.

Table 1 shows sample results for rendering the im-

(a) (b) (c)

Figure 4: The following errors are with respect to color. (a) distance thr = 0.015, average error = 0.00233, max error
= 0.02704. (b) distance thr = 0.035, average error = 0.00371, max error = 0.06754. (c) distance thr = 0.05, average
error = 0.00545, max error = 0.13001.

Algorithm Speed-up Error (color) Error(opacity) #Ray samples %Cracks
average maximum average maximum %leaf nodes %rays

Ray-marching 1 0 0 0 0 4,320,000 - -
Compatible, two-pass 6.20 0.00230 0.02704 0.00396 0.04163 334,438 - -

On-demand compatible 18.24 0.00233 0.02704 0.00401 0.04163 101,605 2.494 2.131

Table 1: Sample results for the warehouse scene (800× 600 antialiased, distance threshold=0.015).

age by the compatible, two-pass method, and by the
on-demand compatible algorithms. We used a distance
threshold of 0.015 which was found to perform well
experimentally. Recall that the distance threshold, de-
scribed in Section 2.3, is used to determine whether to
terminate a subdivision process. The on-demand compat-
ible algorithm performs as well as the compatible, two-
pass algorithm in terms of quality, while sampling 69%
fewer rays and creating 92% fewer nodes. Therefore, the
on-demand compatible algorithm achieves a significant
speedup of 18.24, which is 3 times the speedup achieved
by the compatible, two-pass method. Even the speedup of
6.2 for the compatible, two-pass method is significant for
expensive applications like this one. Corresponding im-
ages are given in Fig. 5. Part (a) shows the correct image
generated by marching all rays, and part (b) shows the in-
terpolated image generated using the on-demand compat-
ible algorithm. (Since the on-demand compatible algo-
rithm generates almost the same image as the compatible
two-pass algorithm, we show only the image generated
by the on-demand version.)

If the on-demand compatible algorithm is used to ren-
der in multiple passes as explained in Section 3.2, the

percentage of cracks is reduced substantially as shown in
Table 2, but of course reducing the speedup.

If desired, higher quality approximations can be ren-
dered by lowering the distance threshold, at the potential
expense of performance.

References
[1] E. Allgower and K. Georg. Generation of triangulations

by reflection.Utilitas Mathematica, 16:123–129, 1979.
[2] F. B. Atalay and D. M. Mount. Hierarchical simplicial

meshes and multidimensional interpolation. Unpublished
Manuscript, 2003.

[3] K. Bala, J. Dorsey, and S. Teller. Radiance interpolants
for accelerated bounded-error ray tracing.ACM Trans. on
Graph., 18(3), August 1999.

[4] U. Behrens and R. Ratering. Adding shadows to a texture-
based volume renderer. In1998 Volume Visualization
Symposium, pages 39–46, 1998.

[5] S. Chandrasekhar.Radiative Transfer. Dover, New York,
1960.

[6] Y. Dobashi, T. Yamamoto, and T. Nishita. Interactive
rendering of atmospheric scattering effects using graph-
ics hardware. InGraphics Hardware 2002, pages 99–108,
2002.

Algorithm %Cracks Speed-up
%leaf nodes %rays

On-demand compatible, one-pass 2.494 2.131 18.24
On-demand compatible, two-pass 0.204 0.122 13.43
On-demand compatible, three-pass 0.041 0.026 10.66

Table 2: Percentage of cracks for multiple passes of the on-demand compatible algorithm

[7] R. Fedkiw, J. Stam, and H. W. Jensen. Visual simulation
of smoke. InProc. of SIGGRAPH 2001, pages 15–22,
2001.

[8] N. Foster and D. Metaxas. Modeling the motion of a hot,
turbulent gas. InProc. of SIGGRAPH 97, pages 181–188,
1997.

[9] S. J. Gortler, R. Grzeszczuk, R. Szeliski, and M. F. Cohen.
The lumigraph.Computer Graphics (Proc. of SIGGRAPH
96), pages 43–54, August 1996.

[10] H. W. Jensen and P. H. Christensen. Efficient simulation
of light transport in scenes with participating media using
photon maps. InProc. of SIGGRAPH 98, pages 311–320,
1998.

[11] W. Krueger. The application of transport theory to visu-
alization of 3d scalar fields. InProc. IEEE Visualization
’90, pages 273–280, 1990.

[12] E. LaMar, B. Hamann, and K. Joy. Multiresolution tech-
niques for interactive texture-based volume visualization.
In Proc. IEEE Visualization ’99, pages 355–362, 1999.

[13] M. Levoy and P. Hanrahan. Light field rendering.Com-
puter Graphics (Proc. of SIGGRAPH 96), pages 31–42,
August 1996.

[14] J. M. Maubach. Local bisection refinement forN -
simplicial grids generated by reflection.SIAM J. Sci. Stat.
Comput., 16:210–227, 1995.

[15] N. Max. Atmospheric illumination and shadows.Com-
puter Graphics(Proc. of SIGGRAPH 86), 20(4):117–124,
1986.

[16] N. Max. Optical models for direct volume rendering.
IEEE Trans. on Visualization and Comp. Graph., 1(2):99–
108, 1995.

[17] T. Nishita, Y. Miyawaki, and E. Nakamae. A shading
model for atmospheric scattering considering luminous
intensity of light sources.Computer Graphics (Proc. of
SIGGRAPH 87), 21(4):303–310, 1987.

[18] PhotoRealistic RenderMan Application
Note#20. Writing fancy atmosphere shaders.
http://graphics.stanford.edu/lab/soft/prman/Toolkit/-
AppNotes/appnote.20.html.

[19] A.J. Preetham, P.Shirley, and B. Smits. A practical ana-
lytic model for daylight. InProc. of SIGGRAPH 99, pages
91–100, 1999.

[20] H. Samet.The Design and Analysis of Spatial Data Struc-
tures. Addison-Wesley, Reading, MA, 1990.

[21] D. M. Y. Sommerville.Analytical Geometry in Three Di-
mensions. Cambridge University Press, Cambridge, 1934.

[22] J. Stam. Stable fluids. InProc. of SIGGRAPH 99, pages
121–128, 1999.

[23] R. Westermann and T. Ertl. Efficiently using graphics
hardware in volume rendering applications. InProc. of
SIGGRAPH 98, pages 169–178, 1998.

(a)

(b)

Figure 5: (a) Ray-marched image (b) Interpolated image using the on-demand compatible algorithm (800x600, anti-
aliased, distance thr = 0.015).

	Introduction
	The Simplex Decomposition Tree
	Parameterizing Rays as Points
	Construction of the sd-tree
	Adaptive and Dynamic Subdivision
	Compatible Refinement and the Simplicial Complex

	Rendering by Interpolation
	One-pass versus Two-pass Rendering
	On-demand Compatible Refinement

	Experimental Results

