RAY INTERPOLANTSFOR FAST RAY-TRACING REFLECTIONS
AND REFRACTIONS!

Fatma Betul Atalay David M. Mount
Department of Computer Science
University of Maryland, College Park
{betul,mount } @cs.umd.edu

ABSTRACT

To render an object by ray tracing, one or more rays are shot from the viewpoint through every pixel of
the image plane. For reflective and refractive objects, especialy for multiple levels of reflections and/or
refractions, thisrequires many expensive intersection calculations. This paper presents a new method for
accelerating ray-tracing of reflective and refractive objects by substituting accurate-but-slow intersection
cal culations with approximate-but-fast i nterpol ation computations. Our approach is based on modeling the
reflective/refractive object as afunction that maps input rays entering the object to output rays exiting the
object. We are interested in computing the output ray without actualy tracing the input ray through the
object. Thisisachieved by adaptively sampling rays from multiple viewpointsin various directions, as a
preprocessing phase, and then interpolating the collection of nearby samples to compute an approximate
output ray for any input ray. In most cases, object boundaries and other discontinuitiesare handled by ap-
plying various heuristics. In cases where we cannot find sufficient evidence to interpolate, we perform ray
tracing as alast resort. We provide performance studies to demonstrate the efficiency of this method.

Keywords: ray tracing, rendering reflections and refractions, interpolation

1 INTRODUCTION

High quality, physicaly accurate rendering of
complex illumination effects such as reflection,
refraction, and specular highlightsis highly desirable
in computer-generated imagery. The most popular
technique for generating these effects is ray tracing
[Whitt80]. However, ray tracing remains a computa-
tionally expensive technique. The primary expensein
ray tracing liesin intersection calculations, especialy
for scenes that contain complex objects, such as
Bezier or NURBS surfaces, and in case of multiple
levels of reflections and/or refractions.

In this paper, we present a method to accelerate ray
tracing of reflective and refractive objects by eimi-
nating intersection calculations. Our algorithm facil-
itates fast, approximate rendering of the object from
any viewpoint, and would be most useful when the
same object isrendered from multipleviewpointsin a
sequence of frames. The key insight to our method is
that aray intersecting a reflective or refractive object
goes through a set of reflections and/or refractions,
and finally exits the object as an output ray. There-
fore, we can mode the object as a function f that
maps input rays to output rays. For many real world

1The support of the National Science Foundation under grant
CCR-0098151 is gratefully acknowledged.

objects which have large smooth surfaces, f is ex-
pected to vary smoothly. Thisisdueto ray coherence,
that is, nearby raysfollow similar reflection/refraction
patterns in smooth regions, and so output rays corre-
sponding to nearby input rays are also close to each
other. This leads to the idea that, rather than com-
puting each and every output ray by tracing the input
ray through the object, we can precompute and store
sparse samples of rays in a data structure, and inter-
polate these samples to get an approximate output ray
for any given input ray. Basicaly, f isdiscretized by
means of adata structure, and an approximation f* to
the actua function f isreconstructed by interpolating
nearby samples during rendering.

Animportant contributionof our work ishandling dis-
continuity regions in which reflection/refraction pat-
terns of nearby rays might differ substantially. We
present aset of heuristicsto permit interpolationwhen
thepartsof aninterpolantlieon different sidesof adis-
continuity. We find a model of the discontinuity and
while avoiding interpolation across the discontinuity
boundary, we still interpolate on either side. In cases
where we cannot find sufficient evidence to interpo-
late, we perform ray tracing as alast resort.

Therest of the paper isorganized asfollows. The next
section summarizes previousrelated research. 1n Sec-

tion 3, we explain the construction of our data struc-
ture. Section 4 outlines the rendering phase and the
heuristics used for handling discontinuities. In Sec-
tion 5, we describe computing local illumination. The
experiments are presented in Section 6. Finaly, we
conclude with Section 7.

2 PREVIOUSWORK

Early research concentrated on accelerating ray trac-
ing by reducing the cost of intersection computations
using bounding volume hierarchies [Rubin80], space
partitioningstructures [Glass84, Kapla85], and meth-
ods exploiting ray coherence [Arvo87, Heckb84].

Recent research has focused on fast generation of ray-
traced images from multiple viewpoints. These sys-
tems exploit frame-to-frame coherence and reuse pix-
els from the previous frame by reprojection and only
recompute or possibly refine the potentially incorrect
pixels[Adels95, Walte99].

The Interpolant Ray Tracer system described by Bala,
Dorsey and Teller introduced the radianceinterpolant
to accelerate shading by quadrilinearly interpolating
radiance samples cached in an adaptive 4D data struc-
turewhileconservatively boundingtheerror [Bala99].
We differ in that we are primarily interested in fast
rendering of reflective and refractive objects. Our
data structure maps rays to rays rather than rays to
radiance, and we interpolate among rays. By this
method, we decouple loca geometry of the object
from the environment, and much less sampling of rays
issufficient than sampling of radianceto render reflec-
tivelrefractive objects. To render reflected textures,
the Interpolant Ray Tracer system shoots additional
reflection rays, whichisexpensive, especialy for mul-
tiple reflections. Their interpolation requires that the
ray treesof all samples used for interpolation be iden-
tical to congtitute a valid interpolant. For reflec-
tive/refractive objects this strong requirement signif-
icantly reduces the cases where interpol ation could be
substituted for ray tracing. Instead, we apply heuris-
tics that would allow us to use interpolationsin more
cases while trading off quality to some extent.

Image-Based Rendering methods constitute another
line of research to support fast rendering of scenes.
Among them, the most relevant to our work is
the Lumigraph [Gortl96] and Light Field Rendering
[Levoy96] techniques. Both are based on dense sam-
pling of the plenoptic function [Adels91]. These sys-
tems have apreprocessing phase wherethe 4D plenop-
tic function is sampled by uniformly subdividing in
all four dimensions. The radiance along any ray from
any viewpoint can then be approximated by quadri-
linearly interpolating the radiance values for the near-
est sixteen ray samples. To have reasonable quality
of complex effects such as reflection, refraction and
specular highlights, these methods should samplevery
densely. Schirmacher, et al. [Schir99] and Sloan, et
al. [Sloan97] proposed extensions to the Lumigraph.

There exist approaches other than ray tracing to ren-
der fast approximations of reflective/refractive ob-
jects. The oldest such method is environment map-
ping[Blinn76]. It assumesthat the environment issuf-
ficiently far away from the reflective object. Another
method explained in [Ofek98] is based on mirroring
the scene objects with respect to areflector. It works
for curved reflectors relying on high resolution tessel -
lation of both thereflector and thereflected objectsand
focuses on asinglelevel of reflection. Heidrich, et al.
proposed alight field method for rendering refractive
objects [Heidr99]. Their method is similar to oursin
that they interpolate rays rather than radiance. How-
ever, since their system is built on alight field struc-
ture, it relies on dense sampling of rays for captur-
ing clear object boundaries and handling discontinu-
ities. Thus, their storage requirements are high. Our
method, on the other hand, samples rays adaptively
and applies various heuristics to achieve high quality
discontinuity rendering at lower sampling rates.

3 SAMPLING PHASE
3.1 Representation of Raysas5D Points

In ray tracing implementations, acommon way to rep-
resent aray R isby itsorigin P and direction vector
d. However, since we need a representation that will
alow us to subdivide the direction space easily, we
employ the direction cube representation as described
by [Arvo87] mapping the 3D direction vector of any
given ray to 2D coordinates. Suppose that R is en-
closed by an axis aligned cube of side length 2 cen-
tered at P. It will hit one of the six faces of the cube
depending onitsdominant axis. Onceitisdetermined
which face theray intersects, d can be mapped toa2D
point, (u, v) € [—1, 1] x[—1, 1],whichistheintersec-
tion point on that cube face. By this method, the ray
space is partitioned into six directional groups, and a
one-to-one mapping is established between each par-
titionand[—1, 1] x[—1, 1]. Consequently, aray isrep-
resented by itsorigin, P, itsdirection group, ¢, and its
direction coordinates (u, v). For afixed number of di-
rection groups, this can be thought of as a5D point.

3.2 TheRI-Tree

In this section, we introduce our two-level data struc-
ture, the RI-Tree which stands for Ray Interpolant
Tree. The ideais to enclose our reflective or trans-
parent object within a bounding box, and sample rays
originating from viewpoints located on the bounding
box in various directions.

Thefirst level of the RI-Tree correspondsto the view-
point space. It consists of six separate quadtrees cor-
responding to the faces of the bounding box. They re-
cursively decompose the space of viewpoints. We re-
fer to these six quadtrees as the viewpoint tree. This
level is uniformly subdivided and the four corners of
each leaf cell congtitute the viewpoint samples as de-
picted in Fig.1(a).

VP

direction trees
(a (b (©

» Viewpoint samples e direction samples

Figure 1. (aViewpoint tree (one face)
(b)Direction hemicube from VP (c)RI-Tree

The second level correspondsto thedirectiona space.
From each viewpoint sample in the viewpoint tree,
rays are sampled in various directions. The space of
all possibledirectionsfrom any viewpoint towardsthe
object constitutes a hemisphere of directions. The
hemisphere can be replaced by a direction hemicube
creating five separate viewing frustums. Independent
direction hemicubes for nearby viewpointsare able to
better capture the variationsin rays that are viewpoint
specific. Weimposefive quadtreeson thefivefaces of
the hemicube. These five trees are referred to as the
direction tree. Each viewpoint sample VP has adirec-
tion tree. The 2D coordinates of the four corners of
each leaf cell inthedirection tree representsthedirec-
tions of the rays we sample as shown in Fig.1(b). For
each direction sample, the corresponding ray—which
is referred to as the input ray—is traced through the
object and the final ray that comes out of the object—
whichisreferred to asthe output ray— isstored inthe
leaf cell associated with that direction sample.

Rays need to be sampled more densely in some re-
gionsthan others. These are the regions where strong
discontinuities exist, causing the reflection/refraction
patterns of the nearby input rays differ substantially.
For thisreason, thesubdivision at thedirectional level
iscarried out adaptively, based on output ray distance.
However, weimposean upper limitonitsdepthto pre-
vent the tree from growing excessively.

4 RENDERING PHASE
4.1 SimpleTwo-level Interpolation

Our goa isto computetheoutput ray for any input ray
without tracing the input ray through the object. In-
stead, we try to utilizethe coherence of rays, and com-
pute an approximate output ray by interpolationusing
sampled rays. Sincethe RI-Treestorestheoriginsand
the direction coordinates of the rays on two separate
levels, we apply atwo-level interpolation scheme.

Consider the case of computing an approximate out-
put ray for aninputray, R = (P, d). First, we project
R onto the bounding box enclosing our object in or-
der to set itsorigin to a point in our viewpoint space.
Assume for the sake of concretenessthat, R intersects
the box at point (). Now, our query ray is represented
as R = (Q,d). Next, we locate the leaf cdll of the
viewpoint treeinwhich @) lies. Let QNode denotethis

Raws ARNE N
L] L]
Raw Rse -
DQy 0 DQue
[]
.\\ // \\ //
(Y- | QNode |/ 2
DQgy DQg

Figure 2: The leaf cells containing Q and (u,v)

leaf cell. Then, we convert d to the 2D direction co-
ordinates, (u, v). For each viewpoint VP correspond-
ing to thefour cornersof QNode, we traverseitsdirec-
tion tree and locate the leaf cell in which (u, v) lies.
Let D@ p denotetheleaf cell in direction tree of VP.
As shown in Fig.2, a this point, we have four direc-
tional leaf cells associated with the four VPs of QN-
ode. These four cells provide us sixteen candidate
rays to be used in interpolation: output rays for the
sixteen sampled rays originating from the four view-
points surrounding the origin of the query ray R, in
four directions surrounding the direction of R.

Ry,
NW
VP
Raw Ry R,
il C Qv’
1" Rup
R

VP SE

(@DQ,p (b) QNode

Figure 3: Two level interpolation

Thefirst set of interpolationsare done at the direction
tree level. For each D@, we compute an approxi-
mate output ray for theray labeled as R vp inFig.3(a).
Ryp istheray originating from VP and hasthe direc-
tion coordinates, (w, v), which are the direction coor-
dinatesof thequery ray R. It servesasan intermediate
query ray. The approximate output ray for Ryp, de-
noted f*(Rvp), iscomputed by bilinear interpolation
of f(Rnw), f(Rne), f(Rsw) and f(Rsg).

After we compute an interpolated output ray,
f*(Ryp) for eech DQp, we propagate these
intermediate output rays to the viewpoint tree level.
As shown in Fig.3(b), Ryps are parallel rays in the
direction of our original query ray, R, and originating
from the four viewpoints surrounding the origin of
R. We compute the output ray for R, f*(R) by
bilinear interpolation of f*(Ryp)s. Consequently,
an approximate output ray for R is computed by the
interpolation of sixteen output ray samples.

4.2 Advanced Interpolation for Discontinuities

The simple interpolation method makes no assump-
tions about the structure of the object, and applies
the same interpolation procedure everywhere. When

there are no strong discontinuities in the scene, the
simpleinterpolation method performswell even when
the RI-Tree is not deep. On the other hand, if the ray
input-output function contains discontinuities, as may
occur at the edges and the outer boundary of the ob-
ject, thenwewill observebleeding of colorsacrossthe
edges. This could be remedied by building a deeper
tree, which would involve sampling of rays at pixel
resolution in the discontinuity regions, but thiswould
result in unacceptably high memory requirements.

Another solutionmight beto follow aconservativeap-
proach as Bala, et al.[Bdad9]. If a discontinuity is
detected, they do not interpolate but ray-trace. This
method reduces the cases one can benefit from inter-
polation. Our approach, however, is to apply inter-
polation much more aggressively. We assume that at
lower levels of thetree, discontinuitiescrossing acell
will be of asimple nature and can be treated as aline
segment. So, wefind amodel of the discontinuity and
while avoiding interpolation across the discontinuity
boundary, we still interpolate on either side.

Patches and Equivalence Classes. In order to ex-
plain how the discontinuitiesare handled, we will de-
scribe the structure of our objects. Our agorithm
is designed to handle the objects that are specified
as a collection of smooth surfaces, referred to as
“patches’. Thepatchesthat share acommon edge may
or may not be joined with sufficiently high continuity
to permit interpolation across the boundary. For ex-
ample, inFig.4(a), wecan interpol atebetween patches
A and B, but not between patches C and D. To pro-
vide this information, we use a simple method. We
group the patches into equivalence classes. Two ad-
jacent patches in the same equivaence class are as-
sumed to be connected continuously. Each patchisas-
signed a patch-identifier and each patch-identifier is
associated with a class-identifier denoting its equiv-
alence class. Associated with each sampled ray, we
store the patch-identifier of the first patch it hits.

Y
.

1 1%y
B
.

.

1 11

QNode

1 1 1 1
.

1 1 1 1

(a (b)

Figure 4: Two-patch case

Two-patch Condition: In the advanced interpole-
tion method, al the sixteen rays might not be used
for interpolation. Moreover, the interpol ation method
might not be applied at al. To determine whether to
compute the output ray by interpolation or by tracing
the ray, we introduce the concept of a two-patch con-
dition. Let pi, p,..., p16 denote the patch-identifiers
associated with the sixteen candidaterays. If p1, po,...,
p1s @regroupedinat most two equiva enceclasses, the

two-patch conditionis satisfied, implyingthat thereis
either none or a single discontinuity crossing the re-
gion surrounded by the sixteen ray hits. In this case,
we can model the discontinuity and interpolate on ei-
ther side of it. This case isshown in Fig.4(b). In the
figure, each corner islabeled with the class-identifier
of the patch hit by theray correspondingtothat corner.
If two-patch conditionis not satisfied, we assume that
multiple discontinuity boundaries exist in the region,
and so we ray-trace rather than interpol ate.

1 11 1 1, 1 1 1

(@ o) ")
Figure5: (a)-(b) Bad cases (¢)-(d) Good cases

Before we continue, let us mention a few problem-
atic cases that could arise. Sincethe knowledge of the
“number of different equival ence classes overlapped”
is based on the information obtained from the ver-
tices, we might be mistaken. Consider the cases de-
picted in Fig.5(a) and (b). For example, in Fig.5(a),
just by looking at the four corners, we would decide
that the cell is overlapped by two equivalence classes
and overlook the third one in between. Similarly for
part (b). We do not detect these cases, and assume
that they arise very rarely. From this point on, we
will assume that if the patches are grouped in two
equivalence classes, only the“good” cases depictedin
Fig.5(c) and (d) could arise.

Let p, denote the patch the query ray R hitsfirst. Ina
two-patch case, among the sixteen candidate rays, we
use only the ones that hit a patch in the same equiv-
alence class as p,.. Such aray isreferred to as a us-
ableray. Weavoid usingtherayshittingtheother side
of thediscontinuity boundary since thosewoul d possi-
bly havevery different reflection/refraction directions.
However, sincethe query ray R isnot actually traced,
we do not know p,.. But, we assume that i should hit
one of the patchesin PS = {p;|]1 < ¢ < 16}, and
we compute the exact first intersection of 12 with the
object checking intersections only with the patchesin
PS. Thisisnot as expensive as a general ray-tracing
of the ray, since typically only a few patches are in-
volved, and only the first level intersections of aray
tracing procedure is computed. Besides, this compu-
tation isrequired only in the two-patch cases.

Note that, in order to catch discontinuities, we take
into account first hits only, however it is possible to
have discontinuitieswithintherest of theraytree. Cur-
rently, these discontinuities are handled by not inter-
polating output rays which are “distant” from each
other, as explained in Section 4.4.

Since at least three interpolants are required to per-
form an interpolation, some cells cannot be used for
interpolation due to unusable candidate rays. The d-

gorithm given in Fig.6 summarizes the advanced in-
terpolation method.

determine the patch hit by the query ray R;
Number OfUsableDQs = 0;
for each of the four DQs do
if (number of usablerays > 3) then
Number OfUsableDQs++;
compute intermediate output ray
by interpolating usablerays,
if (NumberOfUsableDQs > 3) then
compute f*(R) using theintermediate
output rays from successful DQs;
return f*(R);

else
return failure; /= trace theray =/

Figure 6: Advanced interpolation agorithm

For the three-interpolant cases, if the point for which
we attempt to estimate the output ray lies outside the
triangular region formed by the points corresponding
to the usable candidate rays, thisis not an interpola-
tion anymore—it becomes an extrapol ation. Since ex-
trapolated values are less reliable, the user is granted
the option of tuning the extrapolation. If the point to
be extrapolated isfarther from the triangular region—
in terms of its barycentric coordinates—than a given
threshold, extrapolation is disabled and the cell can-
not be used for interpolation.

4.3 Extra Sampling

We can reduce the number of rays ray-traced if wecan
use the DQs with less than three interpolants instead
of eliminating them. These cells are made usable by
finding amodel of the discontinuity and sampling ex-
traraysat oneor both sides of thediscontinuity to sat-
isfy the three-interpol ant requirement.

During preprocessing, if a leaf cell will not be split
any further, but therays corresponding to thefour cor-
ners hit patches that are in two different equivalence
classes, two “good” cases might arise. The first one
iswhen one of the cornersisin one equivalence class
by itself where as the other three are in another class.
The second case iswhen two of them arein one equiv-
alence class while the other two are in another class.

Vi, > 1

o)

v, /s

2 2 2 2 Relion3 2
(a) (b) (c)

Figure 7: One- and two-interpol ant cases

We call the first case the one-interpolant case. Con-
sider theexamplein Fig.7(a). The cornersare labeled
with the class-identifier of the patch hit by theray cor-
responding to that corner. Let ¢(p) denotethe equiva
lence class of patch p. In case thisnodeis needed for
rendering, and if ¢(p,) = 1, then two more sampled

rays are required on the same side of the discontinu-
ity asthe NW corner to performtheinterpolation. The
dashed curvein the figure depicts the actua disconti-
nuity, and the line segment labeled as s isthe approxi-
meation we compute to model the discontinuity. In or-
der to define s, we find the two points labeled as v,
and v-. By binary search on the upper edge of thecell,
we locate the point farthest from the NW corner and
the corresponding ray of which hits a patch p, where
¢(p) = 1. Thisispoint v;. We compute v, similarly.
Then, we sample the rays corresponding to v, and v-.

The second caseiscalled thetwo-interpolant case. An
example is shown in Fig.7(b). During the rendering
phase, if wewant to use thisnodefor interpolation, in
either the case of ¢(p,) = 1 ore(p,) = 2, a least
one more point is required to do the interpolation. In
the figure, the dashed curve represents the actual dis-
continuity. We approximateit by alinesegment s; on
one side of the curve and another line segment s» on
the other side. To define s; and s2, we locate points
v1, va, vz and v4 by binary search similar to the one-
interpolant case. Then, we sample extra rays corre-
sponding to these points. To illustrate the interpola-
tion in atwo-interpolant case, consider Fig.7(c). The
cell is subdivided into three regions (denoted Region
1, 2 and 3). Supposethat ¢(p,) = 1. If (u,v) isin
Region 1, rays corresponding to NW and NE corners
and v; are used to interpolate the output ray. If (u, v)
isin Region 2, NE corner, v; and v» are used. And, if
(u, v) isin Region 3, then we have the option of using
extrapol ation using barycentric coordinates computed
with respect to the NE corner, »; and vs.

4.4 Handling High Curvature

Normally, we assume that the usable rays associated
with the same cell are localized to a small area and
thelir reflection/refraction patterns would be similar.
However, there might be cases where we have two
input rays that are close to each other, but the corre-
sponding output rays are distant from each other. This
case arises when the input rays hit at areas of high
curvature—or more generally under any circumstance
in which the surface normals vary rapidly for nearby
input rays causing them to be reflected/refracted in
very different directions. In that case, we do not inter-
polate among those rays. As a measure to determine
thedi stance between two output rays, we usetheangu-
lar distance between the direction vectors of the rays.
If the distance is greater than a given threshold, those
rays are not usable as interpolants.

5 LOCAL ILLUMINATION

The fina color is determined by blending the loca
illumination with the reflected/refracted color. We
compute the reflected/refracted color by shooting the
output ray through the rest of the environment. Since
we need intersection points and normals to compute
local illumination, we store thefirst intersection point

and the normal along with each ray sample. These are
then used to interpolate the intersection point and the
normal for the query ray applying the same interpola
tion method used for interpolating output rays. Only
the intersection pointsand normalsthat are associated
with usable rays are used as interpol ants.

6 RESULTS

In this section, we present preliminary results of our
algorithm. The images are generated on a 400 MHz
Sparc processor. Our system is built on a ray tracer
which is utilized when rays are sampled during pre-
processing, and when interpolation cannot be done
during rendering. Our models are constructed from
bicubic Bezier patches.

A ray-traced image is generated by tracing each input
ray through the object to compute the output ray. In
our example images, an “interesting” object is placed
in a relatively simple environment. An interpolated
image is generated by computing the output ray by
our interpolation method. We compare the number of
floating point operations(FLOPs) and the CPU time
for the generation of the output rays and the computa-
tion of the loca illumination of the object, since that
isthe part accelerated by our algorithm. These arela
beled as “object-only” in the tables given below. We
also providethetotal number of FLOPsand CPU time
for the entire image. Since the output ray is traced
through the environment, the total FLOPs and CPU
time are not improved as much asthose for the object-
only ones.If we had used the output ray toindex an en-
vironment map instead, theimprovement ratio for the
entire image would be close to the object-only ratios.

For our example images, the viewpoint tree has a
depth of 5. The direction trees are adaptively divided,
and their depthsvary between 1 and 6. All imagesare
of 300 x 300 resolution, and asingleinput ray is shot
through each pixel. For each image, we provide the
ray-traced image, the image generated by our inter-
polation method, and a corresponding image showing
which parts are successfully interpolated and which
parts were ray-traced due to unusable interpolants.
The white pixelscorrespond to theray-traced regions.

Fig.9 shows a reflective bowl on a proceduraly tex-
tured table placed in aroom. The walls are shaded in
different gradient colors, or textures. Part (a) shows
the interpolated image during whose generation no
distance thresholds are imposed among interpolants
(see section 4.4). The image in part (b) is generated
by imposing an anglethreshold, resultingin moreray-
traced pixels, but a better quality image. The artifacts
around theknob of thebowl which arevisiblein (a) are
remedied in (b) by ray-tracing correct regions. Thus,
the user can adjust the distance thresholds according
tothedesired accuracy. Table 1 givesthe performance
resultsfor theimagesin Fig.9. Our agorithmistwice
as fast in terms of the number of FLOPs. Since this
isaclosed, reflective object, the actua ray tracer does

not perform multiple reflectiong/refractions for a sin-
gleray. The performance gain is higher in the case
of refractive objects, because theray tracer does more
work for each ray, whereas our agorithm performs
the same set of interpolations. Fig.10 shows a refrac-
tive vase placed in a similar environment. Table 2
gives the corresponding performance results. Our a-
gorithmisat |east threetimesfaster interms of number
of FLOPs. If the angular threshold is lower, the arti-
facts around the curved interior of the vase are reme-
died trading off performance.

For thereflectivebowl, thepreprocessing takes 1 hour,
and the size of the data structure (for a single face of
the bounding box) is 189 MB. For therefractive vase,
it takes 2.5 hoursto build a data structure of 191MB.
In our current implementation, the data structure has
not been optimized for space or preprocessing time.

Recall that, the interpolation method proposed by
Baa, et al.[Baad9] requires that al sixteen inter-
polants have identical raytrees, whereas our method
applies interpolation much more aggressively. To
demonstrate the advantage of our method, we have
simulated the case when interpolation is not allowed
unless the raytrees of all sixteen interpolants are not
identical. In Fig.9(e), white pixels show the ar-
eas where interpolation cannot be done. For reflec-
tive/refractive objects, very few pixels could be inter-
polated with this method. Obviously, sincethey sam-
ple adaptively with respect to radiance in [Bala99],
they would have sampled more densely around radi-
ance discontinuities, therefore the white region woul d
be thinner. But, the white region would still exist
around radiance discontinuities, whereas in our ago-
rithm these regions are handled by ray interpolation
and not considered as discontinuities.

Figure8: Visualization of output ray distance

Distance between the ray-traced and the interpo-
lated images: The method of Baa, et al. [Bala99]
provides guarantees on maximum errors in radiance,
but ours does not. Since our method is based on es-
timating output rays, the appropriate quality measure
would be the distance between the actua output ray
and the interpolated output ray. Fig.8 is presented to
visualize the distance between the correct output ray
and theinterpolated output ray correspondingto each
pixel of theimage shownin Fig.9. Thered pixescor-

respond totheray-traced areas. Theanglebetweenthe
correct and the interpolated output rays correspond-
ing to the green pixelsis greater than 2°. For the rest
of the pixels, the angular distance between the cor-
rect and theinterpolated output rays varies between 0°
to 2°. These are depicted in gray scae: lighter pix-
els correspond to smaller angular distances. The an-
gular distance diagram on the left is for a viewpoint
tree of depth 5, theright oneisfor aviewpoint tree of
depth 6. As expected, since theright diagram is gen-
erated from a more densely sampled tree, the interpo-
lated output rays are closer to the correct output rays.
If we had built deeper trees, wewould have generated
better quality images with a higher performance.

The example images given are generated with the ex-
trapolation off. Enabling extrapolation increases the
number of cases we can interpolate. Thus, the perfor-
mance gain is higher, but at the expense of quality.

7 CONCLUSION

In this paper, we described aray interpolation method
that accelerates ray tracing of reflective or refractive
objects. We have introduced the RI-Tree data struc-
ture storing adaptively-sampled ray interpolants that
are used to interpolate an approximate output ray for
any inputray that hitsthe object, instead of tracing the
input ray through the object. The RI-Tree allows the
object to be rendered from any viewpoint in any di-
rection. Moreover, the same RI-Tree could be used to
render the object under changing illumination and/or
geometry of the environment.

According to the preliminary results, our agorithm
speeds up ray tracing for relatively complex objects.
The performance gain is significant, especialy if
an input ray goes through multiple levels of reflec-
tions/refractions before escaping the object, since our
algorithm performs a fixed set of interpolationsinde-
pendent of the number of reflections/refractions. Our
interpolations are open to further optimizations such
as applying incremental calculations taking advan-
tage of spatia coherence. The performance gain is
achieved at the potentia expense of quality. How-
ever, dight artifacts in reflected/refracted images are
often tolerable. Besides, our system detects and deals
with the object boundaries and other strong disconti-
nuities where the artifacts are more likely to be no-
ticed. Moreover, the user is granted the option to im-
prove/reduce quality by tuning afew parameters.

Since the entire data structureisbuilt to facilitate ren-
dering from any arbitrary viewpoint, the preprocess-
ing times are high. For the current version, we as-
sume that the preprocessing cost will be amortized
over many renderings in an animation. However, for
the future, we plan to address reducing both the pre-
processing time and space requirement, by filling the
data structure on demand—we will generate samples
only when needed as interpolants. We want to incor-
porate acaching mechanism in order to use previously

generated samples for the new viewing position. We
also plan to extend this method by supporting objects
that are both reflective and refractive.

REFERENCES

[Adels91] E. Adelson and J. Bergen. The plenoptic func-
tion and the elements of early vision. Computational
Models of Visual Processing, pages 1-20, 1991.

[Adels95] S.J. AdelsonandL. F. Hodges. Generating exact
ray-traced animation frames by reprojection. |EEE
Comp. Graph. and Appl., 15(3):43-52, May 1995.

[Arvo87] J. Arvo and D. Kirk. Fast ray tracing by ray clas-
sification. Proc. of SGGRAPH 87, 21(4):196-205,
1987.

[Bala99] K. Bala, J. Dorsey, and S. Teller. Radiance in-
terpolantsfor accel erated bounded-error ray tracing.
ACM Trans. on Graph., 18(3), August 1999.

[Blinn76] J. F. Blinn and M. E. Newell. Texture and re-
flectionin computer generated images. Commun. of
ACM, 19:542-546, 1976.

[Glass84] A. S. Glassner. Space subdivision for fast ray
tracing. |EEE Comp. Graph. and Appl., 4(10):15—
22, October 1984.

[Gortl96] S. J. Gortler, R. Grzeszczuk, R. Szeliski, and
M. F. Cohen. The lumigraph. Proc. of SGGRAPH
96, pages43-54, August 1996.

[Heckb84] P. S. Heckbert and P. Hanrahan. Beam trac-
ing polygonal objects. Proc. of SGGRAPH 84,
18(3):119-127, July 1984.

[Heidr99] W. Heidrich, H. Lensch, M. Cohen, and H. Sei-
del. Light field techniquesfor reflectionsand refrac-
tions. In 10th Eurographics Rendering Workshop,
June 1999.

[Kapla85] M. R. Kaplan. Space tracing a constant time
ray tracer. State of the Art in Image Synthesis (S G-
GRAPH 85 Course Notes), 11, July 1985.

[Levoy96] M. Levoy and P. Hanrahan. Light field render-
ing. Proc. of SGGRAPH 96, pages 3142, 1996.

[Ofek98] E. Ofek and A. Rappoport. Interactive reflec-
tions on curved objects. Proc. of SGGRAPH 98,
14(3):333-342, July 1998.

[Rubin80] S. Rubin and T. Whitted. A three-dimensional
representation for fast rendering of complex scenes.
Proc. of SGGRAPH 80, 14(3):110-116, July 1980.

[Schir99] H. Schirmacher, W. Heidrich, and H. P. Seidel.
Adaptive acquisition of lumigraphs from synthetic
scenes. Computer Graphics Forum (Eurographics
’99), 18(3):151-160, September 1999.

[Sloan97] P.P. Sloan, M. F. Cohen,and S. J. Gortler. Time
critical lumigraph rendering. In Proc. of 1997 Symp.
on Interactive 3D Graphics, pages 17-24, 1997.

[Walte99] B. Walter, G. Drettakis, and S. Parker. Interac-
tive rendering using the render cache. In 10th Euro-
graphics Workshop on Rendering, June 1999.

[Whitt80] T. Whitted. Animproved illumination model for
shaded display. Commun. of ACM, 23(6):343-349,
June 1980.

© (d) C

Figure9: (a) Interpolated image (no anglethreshold) & corresponding col or-coded image, white areas show
ray-traced rays (b) Interpolated image (angle threshold imposed) & corresponding color-coded image (¢)
Ray-traced image (d) The room as viewed when looking into the front of the bowl (same direction asin
(a) (b) and (c)) and from behind the bowl (€) Interpolation by our implementation of the raytree approach

[Balagg).

RAYSTRACED FLOPS CPU TIME (sec) FLOPS CPU TIME (se0)
(object-only) (object-only) (total) (total)
Ray-traced 90000 691 x 10° 37.557 1115 x 10° 73.898
Interpolated (no angle threshold) 6844 298 x 10° 19.485 724 x 10° 52.206
Interpolated (angle threshold imposed) 12716 405 x 10° 26.707 830 x 10° 59.452
Raytree Approach [Bala99] 57781 613 x 106 36.211 1036 x 10° 71.281

Table 1: Performance results for the reflective bowl

@ (b)

Figure 10: (a) Ray-traced image (b) Interpolated image & corresponding col or-coded image.

RAYSTRACED FLOPS CPU TTME (sec) FLOPS CPU TIME (se0)
(object-only) (object-only) (total) (total)
Ray-traced 90000 2206 x 10° 118.047 3343 x 10° 191.994
Interpolated 14237 685 x 10° 39.649 1822 x 10° 97.309

Table 2: Performance resultsfor the refractive vase

