
RAY INTERPOLANTS FOR FAST RAY-TRACING REFLECTIONS
AND REFRACTIONS1

Fatma Betul Atalay David M. Mount

Department of Computer Science
University of Maryland, College Park

fbetul,mountg@cs.umd.edu

ABSTRACT

To render an object by ray tracing, one or more rays are shot from the viewpoint through every pixel of
the image plane. For reflective and refractive objects, especially for multiple levels of reflections and/or
refractions, this requires many expensive intersection calculations. This paper presents a new method for
accelerating ray-tracing of reflective and refractive objects by substituting accurate-but-slow intersection
calculations with approximate-but-fast interpolation computations. Our approach is based on modeling the
reflective/refractive object as a function that maps input rays entering the object to output rays exiting the
object. We are interested in computing the output ray without actually tracing the input ray through the
object. This is achieved by adaptively sampling rays from multiple viewpoints in various directions, as a
preprocessing phase, and then interpolating the collection of nearby samples to compute an approximate
output ray for any input ray. In most cases, object boundaries and other discontinuities are handled by ap-
plying various heuristics. In cases where we cannot find sufficient evidence to interpolate, we perform ray
tracing as a last resort. We provide performance studies to demonstrate the efficiency of this method.

Keywords: ray tracing, rendering reflections and refractions, interpolation

1 INTRODUCTION

High quality, physically accurate rendering of
complex illumination effects such as reflection,
refraction, and specular highlights is highly desirable
in computer-generated imagery. The most popular
technique for generating these effects is ray tracing
[Whitt80]. However, ray tracing remains a computa-
tionally expensive technique. The primary expense in
ray tracing lies in intersection calculations, especially
for scenes that contain complex objects, such as
Bezier or NURBS surfaces, and in case of multiple
levels of reflections and/or refractions.

In this paper, we present a method to accelerate ray
tracing of reflective and refractive objects by elimi-
nating intersection calculations. Our algorithm facil-
itates fast, approximate rendering of the object from
any viewpoint, and would be most useful when the
same object is rendered from multiple viewpoints in a
sequence of frames. The key insight to our method is
that a ray intersecting a reflective or refractive object
goes through a set of reflections and/or refractions,
and finally exits the object as an output ray. There-
fore, we can model the object as a function f that
maps input rays to output rays. For many real world

1The support of the National Science Foundation under grant
CCR-0098151 is gratefully acknowledged.

objects which have large smooth surfaces, f is ex-
pected to vary smoothly. This is due to ray coherence,
that is, nearby rays follow similar reflection/refraction
patterns in smooth regions, and so output rays corre-
sponding to nearby input rays are also close to each
other. This leads to the idea that, rather than com-
puting each and every output ray by tracing the input
ray through the object, we can precompute and store
sparse samples of rays in a data structure, and inter-
polate these samples to get an approximate output ray
for any given input ray. Basically, f is discretized by
means of a data structure, and an approximation f� to
the actual function f is reconstructed by interpolating
nearby samples during rendering.

An important contributionof our work is handling dis-
continuity regions in which reflection/refraction pat-
terns of nearby rays might differ substantially. We
present a set of heuristics to permit interpolationwhen
the parts of an interpolant lie on different sides of a dis-
continuity. We find a model of the discontinuity and
while avoiding interpolation across the discontinuity
boundary, we still interpolate on either side. In cases
where we cannot find sufficient evidence to interpo-
late, we perform ray tracing as a last resort.

The rest of the paper is organized as follows. The next
section summarizes previous related research. In Sec-

tion 3, we explain the construction of our data struc-
ture. Section 4 outlines the rendering phase and the
heuristics used for handling discontinuities. In Sec-
tion 5, we describe computing local illumination. The
experiments are presented in Section 6. Finally, we
conclude with Section 7.

2 PREVIOUS WORK

Early research concentrated on accelerating ray trac-
ing by reducing the cost of intersection computations
using bounding volume hierarchies [Rubin80], space
partitioningstructures [Glass84, Kapla85], and meth-
ods exploiting ray coherence [Arvo87, Heckb84].

Recent research has focused on fast generation of ray-
traced images from multiple viewpoints. These sys-
tems exploit frame-to-frame coherence and reuse pix-
els from the previous frame by reprojection and only
recompute or possibly refine the potentially incorrect
pixels [Adels95, Walte99].

The Interpolant Ray Tracer system described by Bala,
Dorsey and Teller introduced the radiance interpolant
to accelerate shading by quadrilinearly interpolating
radiance samples cached in an adaptive 4D data struc-
ture while conservatively bounding the error [Bala99].
We differ in that we are primarily interested in fast
rendering of reflective and refractive objects. Our
data structure maps rays to rays rather than rays to
radiance, and we interpolate among rays. By this
method, we decouple local geometry of the object
from the environment, and much less sampling of rays
is sufficient than sampling of radiance to render reflec-
tive/refractive objects. To render reflected textures,
the Interpolant Ray Tracer system shoots additional
reflection rays, which is expensive, especially for mul-
tiple reflections. Their interpolation requires that the
ray trees of all samples used for interpolation be iden-
tical to constitute a valid interpolant. For reflec-
tive/refractive objects this strong requirement signif-
icantly reduces the cases where interpolation could be
substituted for ray tracing. Instead, we apply heuris-
tics that would allow us to use interpolations in more
cases while trading off quality to some extent.

Image-Based Rendering methods constitute another
line of research to support fast rendering of scenes.
Among them, the most relevant to our work is
the Lumigraph [Gortl96] and Light Field Rendering
[Levoy96] techniques. Both are based on dense sam-
pling of the plenoptic function [Adels91]. These sys-
tems have a preprocessing phase where the 4D plenop-
tic function is sampled by uniformly subdividing in
all four dimensions. The radiance along any ray from
any viewpoint can then be approximated by quadri-
linearly interpolating the radiance values for the near-
est sixteen ray samples. To have reasonable quality
of complex effects such as reflection, refraction and
specular highlights, these methods should sample very
densely. Schirmacher, et al. [Schir99] and Sloan, et
al. [Sloan97] proposed extensions to the Lumigraph.

There exist approaches other than ray tracing to ren-
der fast approximations of reflective/refractive ob-
jects. The oldest such method is environment map-
ping [Blinn76]. It assumes that the environment is suf-
ficiently far away from the reflective object. Another
method explained in [Ofek98] is based on mirroring
the scene objects with respect to a reflector. It works
for curved reflectors relying on high resolution tessel-
lation of both the reflector and the reflected objects and
focuses on a single level of reflection. Heidrich, et al.
proposed a light field method for rendering refractive
objects [Heidr99]. Their method is similar to ours in
that they interpolate rays rather than radiance. How-
ever, since their system is built on a light field struc-
ture, it relies on dense sampling of rays for captur-
ing clear object boundaries and handling discontinu-
ities. Thus, their storage requirements are high. Our
method, on the other hand, samples rays adaptively
and applies various heuristics to achieve high quality
discontinuity rendering at lower sampling rates.

3 SAMPLING PHASE

3.1 Representation of Rays as 5D Points

In ray tracing implementations, a common way to rep-
resent a ray R is by its origin P and direction vector
~d. However, since we need a representation that will
allow us to subdivide the direction space easily, we
employ the direction cube representation as described
by [Arvo87] mapping the 3D direction vector of any
given ray to 2D coordinates. Suppose that R is en-
closed by an axis aligned cube of side length 2 cen-
tered at P . It will hit one of the six faces of the cube
depending on its dominant axis. Once it is determined
which face the ray intersects, ~d can be mapped to a 2D
point, (u; v) 2 [�1; 1]�[�1; 1], which is the intersec-
tion point on that cube face. By this method, the ray
space is partitioned into six directional groups, and a
one-to-one mapping is established between each par-
tition and [�1; 1]�[�1; 1]. Consequently, a ray is rep-
resented by its origin,P , its direction group, g, and its
direction coordinates (u; v). For a fixed number of di-
rection groups, this can be thought of as a 5D point.

3.2 The RI-Tree

In this section, we introduce our two-level data struc-
ture, the RI-Tree which stands for Ray Interpolant
Tree. The idea is to enclose our reflective or trans-
parent object within a bounding box, and sample rays
originating from viewpoints located on the bounding
box in various directions.

The first level of the RI-Tree corresponds to the view-
point space. It consists of six separate quadtrees cor-
responding to the faces of the bounding box. They re-
cursively decompose the space of viewpoints. We re-
fer to these six quadtrees as the viewpoint tree. This
level is uniformly subdivided and the four corners of
each leaf cell constitute the viewpoint samples as de-
picted in Fig.1(a).

(b)(a) (c)

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

viewpoint
treeVP VP

direction samples direction trees

�
�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��
��

��
��
��
��

�
�
�
�

�
�
�

�
�
�

��
��
��
��

��
��
��
��

�
�
�
�
�
�
�
�

��
��
��
��
�
�
�
�

��
��
��

��
��
��

�
�
�
�

�
�
�
�

�
�
�

�
�
�

viewpoint samples

�
�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

Figure 1: (a)Viewpoint tree (one face)
(b)Direction hemicube from VP (c)RI-Tree

The second level corresponds to the directional space.
From each viewpoint sample in the viewpoint tree,
rays are sampled in various directions. The space of
all possible directions from any viewpoint towards the
object constitutes a hemisphere of directions. The
hemisphere can be replaced by a direction hemicube
creating five separate viewing frustums. Independent
direction hemicubes for nearby viewpoints are able to
better capture the variations in rays that are viewpoint
specific. We impose five quadtrees on the five faces of
the hemicube. These five trees are referred to as the
direction tree. Each viewpoint sample VP has a direc-
tion tree. The 2D coordinates of the four corners of
each leaf cell in the direction tree represents the direc-
tions of the rays we sample as shown in Fig.1(b). For
each direction sample, the corresponding ray—which
is referred to as the input ray—is traced through the
object and the final ray that comes out of the object—
which is referred to as the output ray— is stored in the
leaf cell associated with that direction sample.

Rays need to be sampled more densely in some re-
gions than others. These are the regions where strong
discontinuities exist, causing the reflection/refraction
patterns of the nearby input rays differ substantially.
For this reason, the subdivision at the directional level
is carried out adaptively, based on output ray distance.
However, we impose an upper limit on its depth to pre-
vent the tree from growing excessively.

4 RENDERING PHASE

4.1 Simple Two-level Interpolation

Our goal is to compute the output ray for any input ray
without tracing the input ray through the object. In-
stead, we try to utilize the coherence of rays, and com-
pute an approximate output ray by interpolation using
sampled rays. Since the RI-Tree stores the origins and
the direction coordinates of the rays on two separate
levels, we apply a two-level interpolation scheme.

Consider the case of computing an approximate out-
put ray for an input ray, R = (P; ~d). First, we project
R onto the bounding box enclosing our object in or-
der to set its origin to a point in our viewpoint space.
Assume for the sake of concreteness that, R intersects
the box at point Q. Now, our query ray is represented
as R = (Q; ~d). Next, we locate the leaf cell of the
viewpoint tree in whichQ lies. Let QNode denote this

NW

DQNW

DQSE

DQNE

DQSW

RSW RSE

RNER

QNode

Q

(u,v)

Figure 2: The leaf cells containing Q and (u,v)

leaf cell. Then, we convert ~d to the 2D direction co-
ordinates, (u; v). For each viewpoint VP correspond-
ing to the four corners of QNode, we traverse its direc-
tion tree and locate the leaf cell in which (u; v) lies.
Let DQ

VP
denote the leaf cell in direction tree of VP.

As shown in Fig.2, at this point, we have four direc-
tional leaf cells associated with the four VPs of QN-
ode. These four cells provide us sixteen candidate
rays to be used in interpolation: output rays for the
sixteen sampled rays originating from the four view-
points surrounding the origin of the query ray R, in
four directions surrounding the direction of R.

(a) DQ
VP

(u,v)

NW

NE
R

(b) QNode

VPR

R
NW

VP

VP

RSE

R

RSW

R
VPNW

Q

����

��
��
��
��

��

Figure 3: Two level interpolation

The first set of interpolations are done at the direction
tree level. For each DQ

VP
, we compute an approxi-

mate output ray for the ray labeled asRVP in Fig.3(a).
RVP is the ray originating from VP and has the direc-
tion coordinates, (u; v), which are the direction coor-
dinates of the query rayR. It serves as an intermediate
query ray. The approximate output ray for RVP , de-
noted f�(RVP), is computed by bilinear interpolation
of f(RNW); f(RNE); f(RSW) and f(RSE).

After we compute an interpolated output ray,
f�(RVP) for each DQVP , we propagate these
intermediate output rays to the viewpoint tree level.
As shown in Fig.3(b), RVPs are parallel rays in the
direction of our original query ray, R, and originating
from the four viewpoints surrounding the origin of
R. We compute the output ray for R, f�(R) by
bilinear interpolation of f�(RVP)s. Consequently,
an approximate output ray for R is computed by the
interpolation of sixteen output ray samples.

4.2 Advanced Interpolation for Discontinuities

The simple interpolation method makes no assump-
tions about the structure of the object, and applies
the same interpolation procedure everywhere. When

there are no strong discontinuities in the scene, the
simple interpolationmethod performs well even when
the RI-Tree is not deep. On the other hand, if the ray
input-output function contains discontinuities, as may
occur at the edges and the outer boundary of the ob-
ject, then we will observe bleeding of colors across the
edges. This could be remedied by building a deeper
tree, which would involve sampling of rays at pixel
resolution in the discontinuity regions, but this would
result in unacceptably high memory requirements.

Another solutionmight be to followa conservative ap-
proach as Bala, et al.[Bala99]. If a discontinuity is
detected, they do not interpolate but ray-trace. This
method reduces the cases one can benefit from inter-
polation. Our approach, however, is to apply inter-
polation much more aggressively. We assume that at
lower levels of the tree, discontinuities crossing a cell
will be of a simple nature and can be treated as a line
segment. So, we find a model of the discontinuity and
while avoiding interpolation across the discontinuity
boundary, we still interpolate on either side.

Patches and Equivalence Classes: In order to ex-
plain how the discontinuities are handled, we will de-
scribe the structure of our objects. Our algorithm
is designed to handle the objects that are specified
as a collection of smooth surfaces, referred to as
“patches”. The patches that share a common edge may
or may not be joined with sufficiently high continuity
to permit interpolation across the boundary. For ex-
ample, in Fig.4(a), we can interpolate between patches
A and B, but not between patches C and D. To pro-
vide this information, we use a simple method. We
group the patches into equivalence classes. Two ad-
jacent patches in the same equivalence class are as-
sumed to be connected continuously. Each patch is as-
signed a patch-identifier and each patch-identifier is
associated with a class-identifier denoting its equiv-
alence class. Associated with each sampled ray, we
store the patch-identifier of the first patch it hits.

QNode

1

2 2

1

11

11

1 1

1

1

(b) (a)

A B

D

C

2

1

1

1

Figure 4: Two-patch case

Two-patch Condition: In the advanced interpola-
tion method, all the sixteen rays might not be used
for interpolation. Moreover, the interpolation method
might not be applied at all. To determine whether to
compute the output ray by interpolation or by tracing
the ray, we introduce the concept of a two-patch con-
dition. Let p1, p2,..., p16 denote the patch-identifiers
associated with the sixteen candidate rays. If p1, p2,...,
p16 are grouped in at most two equivalence classes, the

two-patch condition is satisfied, implying that there is
either none or a single discontinuity crossing the re-
gion surrounded by the sixteen ray hits. In this case,
we can model the discontinuity and interpolate on ei-
ther side of it. This case is shown in Fig.4(b). In the
figure, each corner is labeled with the class-identifier
of the patch hit by the ray corresponding to that corner.
If two-patch condition is not satisfied, we assume that
multiple discontinuity boundaries exist in the region,
and so we ray-trace rather than interpolate.

(a) (b)
2

1

1

1

1

11

2

1

2 2

1

1

1 1

2
(c) (d)

Figure 5: (a)-(b) Bad cases (c)-(d) Good cases

Before we continue, let us mention a few problem-
atic cases that could arise. Since the knowledge of the
“number of different equivalence classes overlapped”
is based on the information obtained from the ver-
tices, we might be mistaken. Consider the cases de-
picted in Fig.5(a) and (b). For example, in Fig.5(a),
just by looking at the four corners, we would decide
that the cell is overlapped by two equivalence classes
and overlook the third one in between. Similarly for
part (b). We do not detect these cases, and assume
that they arise very rarely. From this point on, we
will assume that if the patches are grouped in two
equivalence classes, only the “good” cases depicted in
Fig.5(c) and (d) could arise.

Let pr denote the patch the query ray R hits first. In a
two-patch case, among the sixteen candidate rays, we
use only the ones that hit a patch in the same equiv-
alence class as pr. Such a ray is referred to as a us-
able ray. We avoid using the rays hitting the other side
of the discontinuityboundary since those would possi-
bly have very different reflection/refraction directions.
However, since the query ray R is not actually traced,
we do not know pr . But, we assume that R should hit
one of the patches in PS = fpij1 � i � 16g, and
we compute the exact first intersection of R with the
object checking intersections only with the patches in
PS . This is not as expensive as a general ray-tracing
of the ray, since typically only a few patches are in-
volved, and only the first level intersections of a ray
tracing procedure is computed. Besides, this compu-
tation is required only in the two-patch cases.

Note that, in order to catch discontinuities, we take
into account first hits only, however it is possible to
have discontinuitieswithin the rest of the raytree. Cur-
rently, these discontinuities are handled by not inter-
polating output rays which are “distant” from each
other, as explained in Section 4.4.

Since at least three interpolants are required to per-
form an interpolation, some cells cannot be used for
interpolation due to unusable candidate rays. The al-

gorithm given in Fig.6 summarizes the advanced in-
terpolation method.

determine the patch hit by the query ray R;
NumberOfUsableDQs = 0;
for each of the four DQs do

if (number of usable rays� 3) then
NumberOfUsableDQs++;
compute intermediate output ray

by interpolating usable rays;
if (NumberOfUsableDQs� 3) then

compute f�(R) using the intermediate
output rays from successful DQs;

return f�(R);
else

return failure; =� trace the ray �=

Figure 6: Advanced interpolation algorithm

For the three-interpolant cases, if the point for which
we attempt to estimate the output ray lies outside the
triangular region formed by the points corresponding
to the usable candidate rays, this is not an interpola-
tion anymore—it becomes an extrapolation. Since ex-
trapolated values are less reliable, the user is granted
the option of tuning the extrapolation. If the point to
be extrapolated is farther from the triangular region—
in terms of its barycentric coordinates—than a given
threshold, extrapolation is disabled and the cell can-
not be used for interpolation.

4.3 Extra Sampling

We can reduce the number of rays ray-traced if we can
use the DQs with less than three interpolants instead
of eliminating them. These cells are made usable by
finding a model of the discontinuity and sampling ex-
tra rays at one or both sides of the discontinuity to sat-
isfy the three-interpolant requirement.

During preprocessing, if a leaf cell will not be split
any further, but the rays corresponding to the four cor-
ners hit patches that are in two different equivalence
classes, two “good” cases might arise. The first one
is when one of the corners is in one equivalence class
by itself where as the other three are in another class.
The second case is when two of them are in one equiv-
alence class while the other two are in another class.

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

v2

v1

v1

v

(u,v)

s1

s
3

2

1

v2
v

2

v
(u,v)

v

Region 3
(c)(b)(a)

4

Region 1

2

22

1

Region2s

2

1 1 1

22

1

2

Figure 7: One- and two-interpolant cases

We call the first case the one-interpolant case. Con-
sider the example in Fig.7(a). The corners are labeled
with the class-identifier of the patch hit by the ray cor-
responding to that corner. Let c(p) denote the equiva-
lence class of patch p. In case this node is needed for
rendering, and if c(pr) = 1, then two more sampled

rays are required on the same side of the discontinu-
ity as the NW corner to perform the interpolation. The
dashed curve in the figure depicts the actual disconti-
nuity, and the line segment labeled as s is the approxi-
mation we compute to model the discontinuity. In or-
der to define s, we find the two points labeled as v1
and v2. By binary search on the upper edge of the cell,
we locate the point farthest from the NW corner and
the corresponding ray of which hits a patch p, where
c(p) = 1. This is point v1. We compute v2 similarly.
Then, we sample the rays corresponding to v1 and v2.

The second case is called the two-interpolantcase. An
example is shown in Fig.7(b). During the rendering
phase, if we want to use this node for interpolation, in
either the case of c(pr) = 1 or c(pr) = 2, at least
one more point is required to do the interpolation. In
the figure, the dashed curve represents the actual dis-
continuity. We approximate it by a line segment s1 on
one side of the curve and another line segment s2 on
the other side. To define s1 and s2, we locate points
v1, v2, v3 and v4 by binary search similar to the one-
interpolant case. Then, we sample extra rays corre-
sponding to these points. To illustrate the interpola-
tion in a two-interpolant case, consider Fig.7(c). The
cell is subdivided into three regions (denoted Region
1, 2 and 3). Suppose that c(pr) = 1. If (u; v) is in
Region 1, rays corresponding to NW and NE corners
and v1 are used to interpolate the output ray. If (u; v)
is in Region 2, NE corner, v1 and v2 are used. And, if
(u; v) is in Region 3, then we have the option of using
extrapolation using barycentric coordinates computed
with respect to the NE corner, v1 and v2.

4.4 Handling High Curvature

Normally, we assume that the usable rays associated
with the same cell are localized to a small area and
their reflection/refraction patterns would be similar.
However, there might be cases where we have two
input rays that are close to each other, but the corre-
sponding output rays are distant from each other. This
case arises when the input rays hit at areas of high
curvature—or more generally under any circumstance
in which the surface normals vary rapidly for nearby
input rays causing them to be reflected/refracted in
very different directions. In that case, we do not inter-
polate among those rays. As a measure to determine
the distance between two output rays, we use the angu-
lar distance between the direction vectors of the rays.
If the distance is greater than a given threshold, those
rays are not usable as interpolants.

5 LOCAL ILLUMINATION

The final color is determined by blending the local
illumination with the reflected/refracted color. We
compute the reflected/refracted color by shooting the
output ray through the rest of the environment. Since
we need intersection points and normals to compute
local illumination, we store the first intersection point

and the normal along with each ray sample. These are
then used to interpolate the intersection point and the
normal for the query ray applying the same interpola-
tion method used for interpolating output rays. Only
the intersection points and normals that are associated
with usable rays are used as interpolants.

6 RESULTS

In this section, we present preliminary results of our
algorithm. The images are generated on a 400 MHz
Sparc processor. Our system is built on a ray tracer
which is utilized when rays are sampled during pre-
processing, and when interpolation cannot be done
during rendering. Our models are constructed from
bicubic Bezier patches.

A ray-traced image is generated by tracing each input
ray through the object to compute the output ray. In
our example images, an “interesting” object is placed
in a relatively simple environment. An interpolated
image is generated by computing the output ray by
our interpolation method. We compare the number of
floating point operations(FLOPs) and the CPU time
for the generation of the output rays and the computa-
tion of the local illumination of the object, since that
is the part accelerated by our algorithm. These are la-
beled as “object-only” in the tables given below. We
also provide the total number of FLOPs and CPU time
for the entire image. Since the output ray is traced
through the environment, the total FLOPs and CPU
time are not improved as much as those for the object-
only ones.If we had used the output ray to index an en-
vironment map instead, the improvement ratio for the
entire image would be close to the object-only ratios.

For our example images, the viewpoint tree has a
depth of 5. The direction trees are adaptively divided,
and their depths vary between 1 and 6. All images are
of 300� 300 resolution, and a single input ray is shot
through each pixel. For each image, we provide the
ray-traced image, the image generated by our inter-
polation method, and a corresponding image showing
which parts are successfully interpolated and which
parts were ray-traced due to unusable interpolants.
The white pixels correspond to the ray-traced regions.

Fig.9 shows a reflective bowl on a procedurally tex-
tured table placed in a room. The walls are shaded in
different gradient colors, or textures. Part (a) shows
the interpolated image during whose generation no
distance thresholds are imposed among interpolants
(see section 4.4). The image in part (b) is generated
by imposing an angle threshold, resulting in more ray-
traced pixels, but a better quality image. The artifacts
around the knob of the bowl which are visible in (a) are
remedied in (b) by ray-tracing correct regions. Thus,
the user can adjust the distance thresholds according
to the desired accuracy. Table 1 gives the performance
results for the images in Fig.9. Our algorithm is twice
as fast in terms of the number of FLOPs. Since this
is a closed, reflective object, the actual ray tracer does

not perform multiple reflections/refractions for a sin-
gle ray. The performance gain is higher in the case
of refractive objects, because the ray tracer does more
work for each ray, whereas our algorithm performs
the same set of interpolations. Fig.10 shows a refrac-
tive vase placed in a similar environment. Table 2
gives the corresponding performance results. Our al-
gorithm is at least three times faster in terms of number
of FLOPs. If the angular threshold is lower, the arti-
facts around the curved interior of the vase are reme-
died trading off performance.

For the reflective bowl, the preprocessing takes 1 hour,
and the size of the data structure (for a single face of
the bounding box) is 189 MB. For the refractive vase,
it takes 2.5 hours to build a data structure of 191MB.
In our current implementation, the data structure has
not been optimized for space or preprocessing time.

Recall that, the interpolation method proposed by
Bala, et al.[Bala99] requires that all sixteen inter-
polants have identical raytrees, whereas our method
applies interpolation much more aggressively. To
demonstrate the advantage of our method, we have
simulated the case when interpolation is not allowed
unless the raytrees of all sixteen interpolants are not
identical. In Fig.9(e), white pixels show the ar-
eas where interpolation cannot be done. For reflec-
tive/refractive objects, very few pixels could be inter-
polated with this method. Obviously, since they sam-
ple adaptively with respect to radiance in [Bala99],
they would have sampled more densely around radi-
ance discontinuities, therefore the white region would
be thinner. But, the white region would still exist
around radiance discontinuities, whereas in our algo-
rithm these regions are handled by ray interpolation
and not considered as discontinuities.

Figure 8: Visualization of output ray distance

Distance between the ray-traced and the interpo-
lated images: The method of Bala, et al. [Bala99]
provides guarantees on maximum errors in radiance,
but ours does not. Since our method is based on es-
timating output rays, the appropriate quality measure
would be the distance between the actual output ray
and the interpolated output ray. Fig.8 is presented to
visualize the distance between the correct output ray
and the interpolated output ray corresponding to each
pixel of the image shown in Fig.9. The red pixels cor-

respond to the ray-traced areas. The angle between the
correct and the interpolated output rays correspond-
ing to the green pixels is greater than 2�. For the rest
of the pixels, the angular distance between the cor-
rect and the interpolated output rays varies between 0�

to 2�. These are depicted in gray scale: lighter pix-
els correspond to smaller angular distances. The an-
gular distance diagram on the left is for a viewpoint
tree of depth 5, the right one is for a viewpoint tree of
depth 6. As expected, since the right diagram is gen-
erated from a more densely sampled tree, the interpo-
lated output rays are closer to the correct output rays.
If we had built deeper trees, we would have generated
better quality images with a higher performance.

The example images given are generated with the ex-
trapolation off. Enabling extrapolation increases the
number of cases we can interpolate. Thus, the perfor-
mance gain is higher, but at the expense of quality.

7 CONCLUSION

In this paper, we described a ray interpolation method
that accelerates ray tracing of reflective or refractive
objects. We have introduced the RI-Tree data struc-
ture storing adaptively-sampled ray interpolants that
are used to interpolate an approximate output ray for
any input ray that hits the object, instead of tracing the
input ray through the object. The RI-Tree allows the
object to be rendered from any viewpoint in any di-
rection. Moreover, the same RI-Tree could be used to
render the object under changing illumination and/or
geometry of the environment.

According to the preliminary results, our algorithm
speeds up ray tracing for relatively complex objects.
The performance gain is significant, especially if
an input ray goes through multiple levels of reflec-
tions/refractions before escaping the object, since our
algorithm performs a fixed set of interpolations inde-
pendent of the number of reflections/refractions. Our
interpolations are open to further optimizations such
as applying incremental calculations taking advan-
tage of spatial coherence. The performance gain is
achieved at the potential expense of quality. How-
ever, slight artifacts in reflected/refracted images are
often tolerable. Besides, our system detects and deals
with the object boundaries and other strong disconti-
nuities where the artifacts are more likely to be no-
ticed. Moreover, the user is granted the option to im-
prove/reduce quality by tuning a few parameters.

Since the entire data structure is built to facilitate ren-
dering from any arbitrary viewpoint, the preprocess-
ing times are high. For the current version, we as-
sume that the preprocessing cost will be amortized
over many renderings in an animation. However, for
the future, we plan to address reducing both the pre-
processing time and space requirement, by filling the
data structure on demand—we will generate samples
only when needed as interpolants. We want to incor-
porate a caching mechanism in order to use previously

generated samples for the new viewing position. We
also plan to extend this method by supporting objects
that are both reflective and refractive.

REFERENCES

[Adels91] E. Adelson and J. Bergen. The plenoptic func-
tion and the elements of early vision. Computational
Models of Visual Processing, pages 1–20, 1991.

[Adels95] S. J. Adelson and L. F. Hodges. Generating exact
ray-traced animation frames by reprojection. IEEE
Comp. Graph. and Appl., 15(3):43–52, May 1995.

[Arvo87] J. Arvo and D. Kirk. Fast ray tracing by ray clas-
sification. Proc. of SIGGRAPH 87, 21(4):196–205,
1987.

[Bala99] K. Bala, J. Dorsey, and S. Teller. Radiance in-
terpolants for accelerated bounded-error ray tracing.
ACM Trans. on Graph., 18(3), August 1999.

[Blinn76] J. F. Blinn and M. E. Newell. Texture and re-
flection in computer generated images. Commun. of
ACM, 19:542–546, 1976.

[Glass84] A. S. Glassner. Space subdivision for fast ray
tracing. IEEE Comp. Graph. and Appl., 4(10):15–
22, October 1984.

[Gortl96] S. J. Gortler, R. Grzeszczuk, R. Szeliski, and
M. F. Cohen. The lumigraph. Proc. of SIGGRAPH
96, pages 43–54, August 1996.

[Heckb84] P. S. Heckbert and P. Hanrahan. Beam trac-
ing polygonal objects. Proc. of SIGGRAPH 84,
18(3):119–127, July 1984.

[Heidr99] W. Heidrich, H. Lensch, M. Cohen, and H. Sei-
del. Light field techniques for reflections and refrac-
tions. In 10th Eurographics Rendering Workshop,
June 1999.

[Kapla85] M. R. Kaplan. Space tracing a constant time
ray tracer. State of the Art in Image Synthesis (SIG-
GRAPH 85 Course Notes), 11, July 1985.

[Levoy96] M. Levoy and P. Hanrahan. Light field render-
ing. Proc. of SIGGRAPH 96, pages 31–42, 1996.

[Ofek98] E. Ofek and A. Rappoport. Interactive reflec-
tions on curved objects. Proc. of SIGGRAPH 98,
14(3):333–342, July 1998.

[Rubin80] S. Rubin and T. Whitted. A three-dimensional
representation for fast rendering of complex scenes.
Proc. of SIGGRAPH 80, 14(3):110–116, July 1980.

[Schir99] H. Schirmacher, W. Heidrich, and H. P. Seidel.
Adaptive acquisition of lumigraphs from synthetic
scenes. Computer Graphics Forum (Eurographics
’99), 18(3):151–160, September 1999.

[Sloan97] P. P. Sloan, M. F. Cohen, and S. J. Gortler. Time
critical lumigraph rendering. In Proc. of 1997 Symp.
on Interactive 3D Graphics, pages 17–24, 1997.

[Walte99] B. Walter, G. Drettakis, and S. Parker. Interac-
tive rendering using the render cache. In 10th Euro-
graphics Workshop on Rendering, June 1999.

[Whitt80] T. Whitted. An improved illumination model for
shaded display. Commun. of ACM, 23(6):343–349,
June 1980.

(a) (b)

(c) (d) (e)

Figure 9: (a) Interpolated image (no angle threshold) & corresponding color-coded image, white areas show
ray-traced rays (b) Interpolated image (angle threshold imposed) & corresponding color-coded image (c)
Ray-traced image (d) The room as viewed when looking into the front of the bowl (same direction as in
(a) (b) and (c)) and from behind the bowl (e) Interpolation by our implementation of the raytree approach
[Bala99].

RAYS TRACED FLOPS CPU TIME (sec) FLOPS CPU TIME (sec)
(object-only) (object-only) (total) (total)

Ray-traced 90000 691� 106 37.557 1115� 106 73.898
Interpolated (no angle threshold) 6844 298� 106 19.485 724� 106 52.206

Interpolated (angle threshold imposed) 12716 405� 106 26.707 830� 106 59.452
Raytree Approach [Bala99] 57781 613� 106 36.211 1036� 106 71.281

Table 1: Performance results for the reflective bowl

(a) (b)

Figure 10: (a) Ray-traced image (b) Interpolated image & corresponding color-coded image.

RAYS TRACED FLOPS CPU TIME (sec) FLOPS CPU TIME (sec)
(object-only) (object-only) (total) (total)

Ray-traced 90000 2206� 106 118.047 3343� 106 191.994
Interpolated 14237 685� 106 39.649 1822� 106 97.309

Table 2: Performance results for the refractive vase

